Beyond counts and shapes: studying pathology of dendritic spines in the context of the surrounding neuropil through serial section electron microscopy.
نویسندگان
چکیده
Because dendritic spines are the sites of excitatory synapses, pathological changes in spine morphology should be considered as part of pathological changes in neuronal circuitry in the forms of synaptic connections and connectivity strength. In the past, spine pathology has usually been measured by changes in their number or shape. A more complete understanding of spine pathology requires visualization at the nanometer level to analyze how the changes in number and size affect their presynaptic partners and associated astrocytic processes, as well as organelles and other intracellular structures. Currently, serial section electron microscopy (ssEM) offers the best approach to address this issue because of its ability to image the volume of brain tissue at the nanometer resolution. Renewed interest in ssEM has led to recent technological advances in imaging techniques and improvements in computational tools indispensable for three-dimensional analyses of brain tissue volumes. Here we consider the small but growing literature that has used ssEM analysis to unravel ultrastructural changes in neuropil including dendritic spines. These findings have implications in altered synaptic connectivity and cell biological processes involved in neuropathology, and serve as anatomical substrates for understanding changes in network activity that may underlie clinical symptoms.
منابع مشابه
A resource from 3D electron microscopy of hippocampal neuropil for user training and tool development
Resurgent interest in synaptic circuitry and plasticity has emphasized the importance of 3D reconstruction from serial section electron microscopy (3DEM). Three volumes of hippocampal CA1 neuropil from adult rat were imaged at X-Y resolution of ~2 nm on serial sections of ~50-60 nm thickness. These are the first densely reconstructed hippocampal volumes. All axons, dendrites, glia, and synapses...
متن کاملCorrelation of two-photon in vivo imaging and FIB/SEM microscopy
Advances in the understanding of brain functions are closely linked to the technical developments in microscopy. In this study, we describe a correlative microscopy technique that offers a possibility of combining two-photon in vivo imaging with focus ion beam/scanning electron microscope (FIB/SEM) techniques. Long-term two-photon in vivo imaging allows the visualization of functional interacti...
متن کاملPolyribosomes are increased in spines of CA1 dendrites 2 h after the induction of LTP in mature rat hippocampal slices.
Enduring long-term potentiation (LTP) requires immediate protein synthesis, hence we assessed whether more polyribosomes are present in dendritic spines of mature hippocampal dendrites after the induction of LTP. Reconstructions from serial section transmission electron microscopy (sSTEM) revealed more dendritic polyribosomes 2 h posttetanus, relative to low-frequency stimulation (LFS). Polyrib...
متن کاملUltrastructural Analysis of Hippocampal Neuropil from the Connectomics Perspective
Complete reconstructions of vertebrate neuronal circuits on the synaptic level require new approaches. Here, serial section transmission electron microscopy was automated to densely reconstruct four volumes, totaling 670 μm(3), from the rat hippocampus as proving grounds to determine when axo-dendritic proximities predict synapses. First, in contrast with Peters' rule, the density of axons with...
متن کاملSynaptogenesis via dendritic filopodia in developing hippocampal area CA1.
To determine the role of dendritic filopodia in the genesis of excitatory synaptic contacts and dendritic spines in hippocampal area CA1, serial section electron microscopy and three-dimensional analysis of 16 volumes of neuropil from nine male rat pups, aged postnatal day 1 (P1) through P12, were performed. The analysis revealed that numerous dendritic filopodia formed asymmetric synaptic cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience
دوره 251 شماره
صفحات -
تاریخ انتشار 2013